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a b s t r a c t

A radiating electric dipole is located near the interface with a layer of material. The electric and
magnetic fields reflect off the interface and transmit through the material. The exact solution of
Maxwell’s equations can be found in terms of Sommerfeld-type integrals. These integrals have in
general a singularity on the integration axis, and the integrands are extremely complicated functions
of the parameters in the problem. We present a method for the computation of these integrals, and
the corresponding electric and magnetic fields. Key to the solution is the splitting of the incident
field in its traveling and evanescent contributions. With a change of variables, the singularities can be
transformed away, and the method also greatly improves the accuracy and efficiency of the integration.
We illustrate the feasibility of our approach with the computation of the flow lines of electromagnetic
energy in the system. For such flow diagrams, a large number of integrals needs to be computed with
reasonable accuracy. We show that in our approach even the smallest details in flow diagrams can be
revealed.
Program summary
Program titles: CPiP-Auxiliary-1, CPiP-Auxiliary-2, CPiP-Field lines-1, CPiP-Field lines-2.
CPC Library link to program files: http://dx.doi.org/10.17632/476n5ffkvv.1
Licensing provisions: GPLv3.
Programming language: Mathematica.
Nature of problem: In near-field optics and nano-photonics, exact solutions of Maxwell’s equations are
needed. Of particular interest are the reflected and transmitted electric and magnetic fields of dipole
radiation by a layer of material. These solutions involve a large number of integrals, which need to be
computed numerically. In the literature, these integrals are known as Sommerfeld-type integrals.
Solution method: We split the integration range in two parts. The first part corresponds to traveling
dipole waves and the second part results from evanescent dipole waves. In each region we make a
(different) change of variables. The result of this transformation is that it removes a possible singularity
on the integration axis, and it also has a tendency to smoothen out the integrand. There are 38 different
types of integrals. Our method applies to all of them, and is self-contained. There is no need for
tweaking of the programs for each of these, and no adjustments need to be made for different values
of the parameters. The method is developed for the near field. For large distances to the source (the
far field), asymptotic methods are available, and there would be no need for numerical integration.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

The problem of reflection of electric dipole radiation by a
aterial medium has a long history. More than a century ago,
ommerfeld [1] studied the propagation of radio waves near the
urface of the Earth. His solutions for the reflected electric and

✩ The review of this paper was arranged by Prof. Hazel Andrew.
✩ This paper and its associated computer program are available via the
omputer Physics Communication homepage on ScienceDirect (http://www.
ciencedirect.com/science/journal/00104655).
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ttps://doi.org/10.1016/j.cpc.2020.107510
010-4655/© 2020 Elsevier B.V. All rights reserved.
magnetic fields were expressed as integral representations, now
known as Sommerfeld-type integrals. The integrands contain a
Fresnel reflection coefficient, a Bessel function, an exponential,
and a branch point singularity on the positive real axis (the
integration axis). In addition, the integrand has branch points
in the complex plane that can be near the axis of integration,
depending on the parameters, and may have a simple pole (plas-
mon resonance). Moreover, the argument of the exponential has a
branch point, which in general is in the complex plane, but may
be on the integration axis. We take the dipole to be located on
the z axis, a distance H below the interface. The harmonically
oscillating dipole has angular frequency ω, and we shall take the
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Fig. 1. Shown is the dipole near the layer. The arrows indicate the wave vectors
of the traveling waves in an angular spectrum representation, and the dashed
lines symbolically represent the evanescent waves.

time dependence to be exp(−iω t). The free-space wave number
is ko = ω/c. We shall adopt dimensionless variables in order
to reduce the number of parameters. We set h = koH for the
dimensionless distance between the dipole and the interface. In
this way, 2π corresponds to a free-space optical wavelength.
The dimensionless cylindrical coordinates are then (ρ, φ, z), with
ρ = koρ and z = koz. The dependence on ρ enters only through
the arguments of the Bessel functions as Jn(αρ), where α is the
ntegration variable, and the range is 0 ≤ α < ∞. Clearly, for ρ
ot too small, the integrand is oscillatory, adding another layer of
omplexity to the problem. The dependence on z enters through
the exponential, which is oscillatory for small α and decaying
for large α. The φ dependence of the problem comes from the
orientation of the oscillating dipole, and enters as factors in the
expressions for the fields, but the Sommerfeld-type integrals are
independent of φ. The dependence on the wave number ko only
nters as the inverse length scale.
The numerical evaluation of these integrals has been consid-

red by many authors [2–8]. In several approaches, the contour of
ntegration is deformed to a curve in the complex plane in order
o avoid branch points. The disadvantage of this method is that
he contour depends on the material parameters, in particular the
ocation of the branch points, and needs to be determined on
case-by-case basis. Asymptotic methods have been developed

o deal with the oscillatory behavior of the integrands for large
ρ. In this approach, the integral over the tail of the integration
region is evaluated analytically with asymptotic methods. Also,
clever substitutions have been proposed to smoothen out the fast
oscillations.

When the dipole radiation reflects at the interface, part of the
adiation is transmitted into the medium. We shall consider the
ore general setup where the medium is a layer on a substrate,
s depicted in Fig. 1. In near-field optics, radiation phenomena on
sub-wavelength scale are of interest. For instance, the dipole en-
rgy emission rate depends on the distance H between the dipole

and the surface, if this distance is on the order of a wavelength
or less [9–11]. With the invention of metamaterials, the very
details of the near-field radiation patterns have become of utmost
importance. It has been predicted that a thin layer of negative-
index-of-refraction material could have the potential to form a
sub-wavelength image of a source in region 3 in the figure [12].
Another prediction is that near an epsilon-near-zero metama-
terial an electric dipole can levitate in its own reflected field,
provided that the particle is very close to the interface [13–16]. In
order to understand such phenomena, the electric and magnetic
fields must be known with sub-wavelength precision in every of
the three regions shown in Fig. 1. The radiation patterns in the
 a
far field, either in region 1 or region 3, can be obtained in closed
form, for instance with the method of stationary phase [17–19],
so we will not be concerned with these far-field limits.

2. The setup

We shall consider an electric dipole located near a layer on
a substrate, as illustrated in Fig. 1. The lower interface is the xy
plane and the second interface is a plane at z = L. Each medium
is represented by its (relative) permittivity ε and its (relative)
permeability µ. The index of refraction n is then a solution of
n2

= εµ, and we take the solution (root) for which the imaginary
part of n is positive or zero. For instance, when both ε and µ are
positive, the index of refraction is n =

√
εµ, and when both ε

and µ are in the second quadrant of the complex plane we must
take the solution n = −

√
εµ. Which solution to take depends

n where ε and µ are located in the complex plane. To find the
orrect root, we write ε = |ε| exp(iθε), with 0 ≤ θε ≤ π , and
imilarly for µ. It was shown in [20] that the solutions for the
indices of refraction then follow from dividing the phase angles
by 2. This is the same as

n =
√

ε
√

µ, (1)

when the branch line of the square root function is taken to be
just below the negative real axis (as in Mathematica). For later
purposes we shall take ε1 > 0, µ1 > 0, and therefore n1 =

ε1µ1 > 0. The embedding medium of the dipole is transparent.
With the help of Weyl’s representation of the scalar Green’s

function [21], the source field Es, emitted by the dipole, is rep-
resented as a linear superposition of polarized (s and p) plane
aves. Each wave is either traveling into the direction of the wave
ector, as shown by arrows in Fig. 1, or exponentially decaying
n the positive z direction, as shown symbolically by the dashed
ines. It can also be a combination of both, which happens if ε or
µ of the medium has an imaginary part. Each plane wave partially
reflects at the surface and partially penetrates the layer. Multiple
reflections at both interfaces then lead to the Ea and Eb waves in
he layer. Part of the light exits the layer as the transmitted wave
t. The complex amplitudes of the various waves, relative to the
ncident wave, are the Fresnel coefficients for these waves. Their
xplicit expressions are given in the Appendix. The total reflected
r), layer (a and b), and transmitted (t) waves then follow by
aking the same superposition as for the incident field.
For any of the wave vectors, the wave number is k2 = εµk2o.

ll wave vectors in Fig. 1 must have the same parallel component
∥, otherwise the boundary conditions at the interfaces cannot
e met. This is used explicitly in the derivation of the Fresnel
oefficients. In an angular spectrum representation, this k∥ labels
he partial waves, and it is the integration variable for the super-
osition. The integral runs over the entire k∥ plane, which is the
y plane. For a given k∥ we then have for the z component of a
ave vector: k2z = εµk2o − k2

∥
, and this gives two possible values

or kz . We set kz = ±kov, and we introduce the variable α as

= k∥/ko. (2)

e then get v2
= n2

− α2, and this determines the variable
, apart from a minus sign. Just like for the index of refraction,
e take the solution in the upper half of the complex plane, and
ossibly on the real axis. Which root to take then depends on the
alues of n and α. It can be shown that if we take

=
√
n + α

√
n − α, (3)

then this is the correct solution for all possible combinations of
parameters. So, we have a v1, a v2 and a v3, which go along with
the corresponding indices of refraction n1, n2 and n3. These v’s
re functions of α, and α is in the range 0 ≤ α < ∞. From Fig. 1
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we then see that for the incident wave (the Es going up) we have
ki,z = kov1. For the Es directed away from the interface and for
the r wave, the z components of the wave vectors are −kov1. For
the a and b waves we have kov2 and −kov2, respectively, and for
he t wave we have kt,z = kov3.

The dipole is located on the z axis, a distance H below the
lower interface. The dipole moment of the oscillating dipole is in
its most general form given by

d(t) = Re(de−iωt ), (4)

where the complex amplitude d is any complex-valued vector.
This vector can be written as

d = doû, do > 0, û∗
· û = 1. (5)

The amplitude constant do only affects the overall factors in the
ields. The complex-valued unit polarization vector determines
he state of oscillation. For û real, the dipole oscillates linearly
along the û direction, and for û complex the dipole moment d(t)
traces out an ellipse in a plane. By appropriate choice of û, this
can be any ellipse in any plane [22]. In Sommerfeld’s problem, he
had û = ez , corresponding to a dipole oscillating perpendicular to
the interface. Another popular choice is û = ey, which represents
a dipole oscillating parallel to the interface. For instance, for

û = −
1

√
2
(ey + iez), (6)

the dipole moment traces out a circle in the yz plane, rotating
counterclockwise when viewed down the positive x axis (left-
polarized, or positive helicity). We shall make no assumptions
about this vector û, and consider the general solution which
covers all cases.

3. Solution in terms of sommerfeld-type integrals

The electric and magnetic fields for the setup depicted in Fig. 1
can be found in closed form. For the electric and magnetic fields,
we split off factors as

E(r) = µ1ζ Ẽ(r), (7)

B(r) = µ1
ζ

c
B̃(r), (8)

with

ζ =
k3odo
4πεo

. (9)

In this way, Ẽ(r) and B̃(r) are dimensionless, and any dependence
n the wave number is contained in the overall constant ζ , apart
rom the fact that spatial dimensions are measured in inverse
ave numbers. We have h = koH for the distance between the
ipole and the interface, ℓ = koL for the dimensionless layer
hickness, and x, ρ, etc. for the various coordinates.

Let q1 = kor1 be the dimensionless location of the field point
ith respect to the location of the dipole. So,

1 = xex + yey + (z + h)ez . (10)

For the source field we then have [23]

Ẽs =

{
û − (q̂1 · û)q̂1 +

[
û − 3(q̂1 · û)q̂1

]
×

i
n1q1

(
1 +

i
n1q1

)}
ein1q1

q1
, (11)

B̃s = n1(q̂1 × û)
(
1 +

i
n1q1

)
ein1q1

q1
, (12)

with q = |q | and q̂ = q /q .
1 1 1 1 1
Expressions for the fields in regions 1, 2 and 3 are derived in
Ref. [24]. We adopt polar coordinates (ρ, φ) in the xy plane, so
he unit vectors are

eρ = ex cosφ + ey sinφ, (13)

φ = −ex sinφ + ey cosφ. (14)

he dependence on the dipole polarization vector û enters only
through its cylindrical coordinates components uρ = û · eρ ,
uφ = û · eφ and uz = û · ez . The fields are then found to be

˜1 = Ẽs + eρuρ(R (1)
s + R (1)

p ) + eφuφ(R (2)
s + R (2)

p ) + ezuzR (3)
p

+ (eρuz − ezuρ)R (4)
p , (15)

B̃1 = B̃s + eρuφ(R (3)
s + R (5)

p ) + eφuρ(R (4)
s + R (6)

p ) + ezuφR (5)
s

+ eφuzR (7)
p , (16)

Ẽ2 = eρuρ(L(1)
s + L(1)

p ) + eφuφ(L(2)
s + L(2)

p ) + ezuzL(3)
p

+ eρuzL(4)
p + ezuρL(5)

p , (17)
˜ 2 = eρuφ(L(3)

s + L(6)
p ) + eφuρ(L(4)

s + L(7)
p ) + ezuφL(5)

s

+ eφuzL(8)
p , (18)

Ẽ3 = eρuρ(T (1)
s + T (1)

p ) + eφuφ(T (2)
s + T (2)

p ) + ezuzT (3)
p

+ eρuzT (4)
p + ezuρT (5)

p , (19)
˜ 3 = eρuφ(T (3)

s + T (6)
p ) + eφuρ(T (4)

s + T (7)
p ) + ezuφT (5)

s

+ eφuzT (8)
p . (20)

he functions R (i)
σ , L(i)

σ and T (i)
σ are the auxiliary functions needed

o construct the fields. Their explicit expressions are given in the
Appendix. It should be noted that there is a significant improve-
ent for the representation for fields in the layer, as compared

o the results derived in Ref. [24]. These auxiliary functions are
ommerfeld-type integrals, and their numerical evaluation is a
hallenge. Moreover, for each field point (ρ, φ, z) it requires 12 or
13 of these integrals to be computed in order to find the electric
and magnetic field at that single point.

For the special case of a single interface, we set ℓ = 0. The
edium 2 disappears, and there is no need for Ẽ2, B̃2, and the
uxiliary functions L(i)

σ . Also, the remaining auxiliary functions
(i)
σ and T (i)

σ simplify considerably, as shown in the Appendix.

. Auxiliary functions

Let us first consider the function R (1)
s , given by Eq. (A.18), and

or a single interface. Written out more explicitly, it reads

(1)
s (ρ, z) =

i
2

∫
∞

0
dα

α

v1(α)
µ3v1(α) − µ1v3(α)
µ3v1 (α) + µ1v3(α)

eiv1(α)(h−z)

× (J0(αρ) + J2(αρ)). (21)

ere, v1(α) and v3(α) are given by Eq. (3) with n = n1 and n = n3,
espectively. To see what we are integrating, the integrand as a
unction of α is shown in Fig. 2, with the parameters given in
he caption. The solid curve is the real part and the dashed curve
s the imaginary part of the integrand. The index of refraction
f the embedding medium is n1, which is positive. From Eq. (3)
e see that for α = n1 we have v1 = 0. This v1 appears in the
umerator of the integrand, and therefore we have a singularity
t α = n1, as can clearly be seen from the figure. This singularity
s on the α axis, the axis of integration. We shall see below that
his singularity is integrable.

The integral over α is shown in Fig. 3. The solid and dashed
urves are the real and imaginary parts of this auxiliary function.
he integration was done with NIntegrate in Mathematica, and
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Fig. 2. The graph shows the integrand on the right-hand side of Eq. (21) for
ε1 = 1, ε3 = 2, µ1 = µ3 = 1, h = 2, ρ = 3 and z = −2.

Fig. 3. The graph shows the function R (1)
s (ρ, z) from Eq. (21) as a function of

ρ, and for z = −2. The parameters are the same as for Fig. 2.

Fig. 4. The graph shows the integrand of R (5)
s (ρ, z) for ε1 = 6, ε3 = 3+0.01∗ i,

µ1 = µ3 = 1, h = 2, ρ = 3 and z = −2.

pparently, the singularity is easily handled by the software. Each
oint of this graph is an integral over α. Despite the large number

of integrals to be computed for this graph, the runtime is less than
one minute. The AccuracyGoal for integrations was set at 6 for
this graph, and will be the same for other graphs to follow.

Let us now consider R (5)
s , given by Eq. (A.22), for a single

interface, and with the parameters given in the caption of Fig. 4.
The index of refraction is n1 = 2.45, and we see again a sharp
peak at α = n1. Some other oscillations appear for α < n1. Fig. 5
shows the auxiliary function R (5)

s , obtained by integrating over α.
The indicated point ρ = 3 is the integral over the curve in Fig. 4.
ven though Mathematica does not give convergence warnings,
he result is obviously miserable. Moreover, the computation time
or the graph in Fig. 5 is 21 min, which is much too slow for any
pplications.
The integrands of R (1)

s and R (5)
s have the 1/v1 singularity. For

the example with R (1)
s , this appeared to be no problem, whereas

for the example with R (5)
s the numerical integration yielded an

unacceptable result.

5. Traveling and evanescent integrations

For the embedding medium of the dipole we have ε1 > 0 and
µ > 0, which is the most common case. Then n > 0, and v = 0
1 1 1
Fig. 5. The graph shows the function R (5)
s (ρ, z) as a function of ρ, and for

z = −2. The parameters are the same as for Fig. 4.

at α = n1. The functions R (1)
s , R (2)

s , R (5)
s , R (3)

p and R (7)
p have this

v1 in the denominator of the integrand, and therefore there is a
singularity on the line of integration. As shown in the previous
section, this may or may not be a problem in the numerical
integration. Whether this is a problem does not only depend on
the function under consideration, but also on the parameters.

In order to resolve this issue of a singularity on the line of
integration, we split the integrals over α as follows:∫

∞

0
dα(. . .) =

∫ n1

0
dα(. . .) +

∫
∞

n1

dα(. . .). (22)

The separation point of the integrals is at the location of the
singularity. The splitting has a physical significance. For the first
integral, the integration range is 0 ≤ α < n1. For these values of
α, the function v1(α) is real and positive. Since kov1 is the z com-
ponent of a wave vector in the angular spectrum representation
of the incident source field, the corresponding wave vector is real,
and therefore this represents a traveling incident wave. For the
second integral we have α > n1, and v1 is positive imaginary. The
angular spectrum incident plane wave is evanescent, and decays
exponentially in the positive z direction. The splitting of the
integral in Eq. (22) is a splitting in traveling (tr) and evanescent
(ev) incident waves. We shall write, for instance, R (1)tr

s and R (1)ev
s

for the respective contributions to this auxiliary function.
For the traveling part we make the change of variables α → u

n1u =

√
n2
1 − α2 (tr). (23)

or functions with the 1/v1 singularity, we then have
n1

0
dα

α

v1
(. . .) = n1

∫ 1

0
du(. . .), (24)

nd in the new representation on the right-hand side the singu-
arity has disappeared. The other functions have the form

n1

0
dα α(. . .) = n2

1

∫ 1

0
du u(. . .), (25)

nd we shall see later that there is an advantage to split these
unctions as well. The change of variables in Eq. (24) also shows
hat the singularity in the α representation is integrable from the
eft.

In the evanescent region we make the change of variables

1u =

√
α2 − n2

1 (ev). (26)

ntegrals then transform as∫
∞

n1

dα
α

v1
(. . .) = −in1

∫
∞

0
du(. . .), (27)∫

∞

dα α(. . .) = n2
1

∫
∞

du u(. . .). (28)

n1 0
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Fig. 6. The graph shows the traveling part of the integrand of R (1)
s for ε1 = 1,

3 = 2, µ1 = µ3 = 1, h = 2, ρ = 3 and z = −2, as a function of u.

Fig. 7. The graph shows the evanescent part of the integrand of R (1)
s for ε1 = 1,

3 = 2, µ1 = µ3 = 1, h = 2, ρ = 3 and z = −2, as a function of u.

rom Eq. (27) it follows that also in the evanescent region the
/v1 singularity has been transformed away, so in the α repre-

sentation this singularity is also integrable from the right. In both
transformations the singular point at α = n1 moves to the point

= 0 in the new representation.
In the above transformations, the remaining parts of the in-

egrands have to be written as a function of u. This is done by
xpressing α in terms of u as

= n1

√
1 − u2 (tr), (29)

= n1

√
1 + u2 (ev). (30)

. Auxiliary functions in the tr+ev representation

In order to see the advantage of the splitting, we consider the
ame examples as in Section 4. The integrand of R (1)

s is shown
in Fig. 2 in the α representation. After the transformation we get
new integrands, which are now a function of u. Fig. 6 shows the
traveling part of the integrand, which corresponds to the range
0 ≤ α < 1 in Fig. 2. The point α = 1 corresponds to the
point u = 0 in the u representation, and clearly the singularity
as disappeared. Fig. 7 shows the transformed evanescent part,
orresponding to the range 1 < α < ∞ in Fig. 2. The lower limit
= 1 in Fig. 2 has a singularity, whereas the integrand in the

orresponding point u = 0 in Fig. 7 is finite.
Next, we consider the integrand of R (5)

s , shown as a function
of α in Fig. 4 for a given value of ρ. The traveling and evanes-
cent parts in the u representation are shown in Figs. 8 and 9,
respectively. Both in the traveling and in the evanescent parts,
the rapid oscillations near α = n1 = 2.45 have smoothened
ut considerably. When integrating over α to find the auxiliary
unction R (5)

s , we obtained the graph in Fig. 5. The result for inte-
ration over u is shown in Fig. 10. Whereas the result with the α

integration is basically useless, the result with the u integration is
perfect. Moreover, the computation time for the graph in Fig. 5 is
21 min, but the graph in Fig. 10 only takes 2 min. It should also be
noted that each point in the graphs in Figs. 5 and 10 requires an
integration, since the value of ρ varies from point to point. So, a
Fig. 8. Shown is the traveling part of the integrand of R (5)
s for the same

parameters as in Fig. 4.

Fig. 9. Shown is the evanescent part of the integrand of R (5)
s for the same

arameters as in Fig. 4.

Fig. 10. The graph shows the function R (5)
s as a function of ρ, and for z = −2.

The parameters are the same as for Fig. 5.

large number of integrals needs to be computed to produce these
graphs. We conclude that the tr + ev splitting not only greatly
improves the accuracy of the integration, but it also reduces the
computation time tremendously.

Although the tr + ev splitting and the associated change
of variables was mainly introduced to alleviate the numerical
integration of integrals with the 1/v1 singularity at the index
of refraction, there appears to be also an advantage to split the
remaining integrals. These are of the form shown in Eqs. (25) and
(28). We recall that the point α = n1 becomes the point u = 0
for both the traveling and the evanescent integrals. We see from
Eqs. (25) and (28) that the integrands in the u representation pick
up a factor of u. Therefore, whatever the value of the integrand
is at α = n1, the new integrand in the corresponding point is
zero. If there are any peaks near α = n1, they disappear in the
splitting and change of variables. Fig. 11 shows the integrand
of T (8)

p , and we see that there are strong peaks in both the real
and the imaginary parts near the index of refraction. Figs. 12 and
13 show the integrands for the traveling and evanescent parts
in the u representation, and indeed these functions vanish at
u = 0. Fig. 14 shows the auxiliary function T (8)

p . It appears that the
results for the α integration and the u integration are identical, so
there are no issues as in Fig. 5. However, the runtime for the α
integration is 6 min, whereas the integration time in the u domain
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Fig. 11. Shown are the real (solid curve) and imaginary (dashed curve) parts of
he integrand of T (8)

p as a function of α. The parameter for the layer system are
ε1 = 1, ε2 = 4 + 0.1 ∗ i, ε3 = 2, µ1 = µ2 = µ3 = 1, ℓ = 4, h = 2, ρ = 3 and
z = 6. The peak near α = 1 is here not due to a 1/v1 singularity.

Fig. 12. The graph shows the integrand of the traveling part of the function T (8)
p

s a function of u.

Fig. 13. The graph shows the integrand of the evanescent part of the function
T (8)
p as a function of u.

s only 2 min. Even though there may be no issues with a singular
oint, there still is definitely an advantage to split the remaining
ntegrals into their traveling and evanescent parts.

. Field lines of energy flow

An interesting application of the solution with Sommerfeld-
ype integrals is the visualization of the flow lines of energy.
lectromagnetic energy flows along the field lines of the (time
veraged) Poynting vector, defined as

(r)k =
1

2µo
Re

[
1
µk

E(r)∗
k
× B(r)k

]
. (31)

Here, k = 1, 2, 3, indicates the regions, as in Fig. 1. We set

S(r)k = µ2
1

ζ 2

2µoc
σ(r)k, (32)

and this defines the dimensionless Poynting vector σk. We then
have

σ(r) = Re
[
Ẽ(r)∗ × B̃(r)

]
, (33)
k k k
Fig. 14. The graph shows the function T (8)
p as a function of ρ, for z = 6. The

parameters are the same as for Fig. 11.

in terms of the dimensionless complex field amplitudes, given by
Eqs. (15)–(20).

Field lines of energy flow are in general 3D curves, which
makes a visualization cumbersome. We shall consider a dipole
moment in the yz plane, so that ux = 0. With uφ = 0, many
terms in Eqs. (15)–(20) are zero. It can then be verified from the
solution above that for a field point in the yz plane the complex
amplitude of the electric field is in the yz plane and the complex
amplitude of the magnetic field only has an x component. It then
follows that the Poynting vector for a field point in the yz plane
s in the yz plane. Therefore, a field line through a point in the yz
lane stay in the yz plane, and consequently such a field line is a
D curve in the yz plane.
A typical example of a flow line diagram is shown in Fig. 15.

he parameters are given in the caption. The field lines emanate
rom the location of the dipole. At the first interface, they bend
owards the normal upon crossing, as expected for transition into
denser medium. At the second interface they bend away from

he normal, as would optical rays when passing into a thinner
edium. For a linear dipole in free space, the field lines would
e straight, running outward in the radial direction. It seems from
he figure that at the interfaces the field lines smoothly cross the
nterfaces. This due to the fact thatMathematica connects the field
ines in the various regions as smooth curves. An enlargement of
crossing point would show that the field lines actually have an
brupt change of direction upon crossing, just like optical rays do
pon refraction. Despite the large number of auxiliary functions
hat need to be computed to make the graph in Fig. 15, the
untime is only 6 min.

Fig. 16 shows the flow line pattern for a counterclockwise
otating dipole moment near a single interface. Vector û is given
y Eq. (6). The field lines spiral out of the dipole in a counter-
lockwise direction, and at the interface they bend towards the
ormal. Far away, the field lines become approximately straight.
he rotation in the flow field is a near field phenomenon that does
ot extend into the far field. There is a difference in appearance
f the field lines in Figs. 15 and 16. For the first figure, we use
treamPoints. Specific points in the yz plane are chosen, and
athematica calculates the field lines through the given points.
high density of field lines implies a stronger field. In Fig. 16,

he choice of StreamPoints is left to Mathematica. In Fig. 15, all
ield lines start at the dipole and then run away until they hit the
oundary of the graph. In Fig. 16, field lines are broken when they
ome too close together. This gives a more uniform density of
ield lines. Both types of graphs are useful. A third possibility (not
hown here) is to choose StreamPoints, but then let Mathematica
ecide which field lines to break in order to give a more uniform
ensity.
Fig. 17 shows the energy flow pattern for a dipole oscillating

nder 30◦ with the positive z axis. Most field lines are almost
traight, except into the direction of the dipole axis there seems
o be turbulence in the energy flow field. An enlargement, as
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Fig. 15. The graph shows the energy flow pattern for radiation emitted by
a vertical dipole (û = ez ). The interfaces are located at z = 0 and z = 3,
ndicated by horizontal lines in the figures. The material parameters are ε1 = 1,
2 = 4 + 0.01 ∗ i, ε3 = 2, µ1 = µ2 = µ3 = 1, and the dipole is located at a
istance h = 2 below the first interface.

Fig. 16. Shown is the energy flow pattern for radiation emitted by a rotating
ipole moment near a single interface. The material parameters are ε1 = 1,
3 = 4 + 0.01 ∗ i, µ1 = µ3 = 1, and the dipole is located at a distance h = 2
elow the interface.

hown in Fig. 18, reveals that this turbulence is actually a string
f vortices, located along the dipole axis, and from the location
f the dipole to the interface. Each vortex counterrotates the
revious one, and in between is a host of singularities. At such
oints, the direction of the flow field is undetermined, and the
oynting vector is zero.
Another interesting phenomenon can be seen in the top-right

art of Fig. 18. Field lines entering the picture on the left cross the
nterface, and bend away from the normal upon crossing. They
end so much that on the right they re-enter the lower medium,
nd eventually exit the picture to the right. Such peculiar behav-
or is a near-field effect that can only be found from the exact
olutions of Maxwell’s equations, and by considering a very fine
cale.
Fig. 17. Shown is the energy flow pattern for radiation emitted by a dipole
moment oscillating under 30◦ with the z axis. The material parameters are
ε1 = 4, ε3 = 1 + 0.01 ∗ i, µ1 = µ3 = 1, and the dipole is located at a distance
h = 10 below the interface.

Fig. 18. The diagram shows an enlargement of a part of the graph in Fig. 17.

8. The programs

The program CPiP-Auxiliary-1.nb computes the auxiliary func-
tions for the layer problem. The material parameters are ε1, µ1,
2, µ2, ε3 and µ3, which are complex in general. Their imaginary
arts must be positive or zero. The values of ε1 and µ1 are
estricted to positive numbers, necessary for the splitting of the
ntegrals in their traveling and evanescent parts. The dimension-
ess layer thickness is ℓ and the dimensionless distance between
he dipole and the lower interface is h, and both must be positive.
he dimensionless spatial coordinates are ρ (positive or zero) and

z (real). For a given auxiliary function, the value of z has to be in
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the appropriate range (negative for an R , in between zero and ℓ

for an L and larger than ℓ for a T ). The AccuracyGoal parameter
(ag) specifies the accuracy for the numerical integration. The best
choice seems to be ag = 6, although this sometimes leads to
non-converging warnings by Mathematica. The result is still more
than adequate for graphing purposes, and can be ignored. When
lowering ag to, say, 2, the warnings disappear, but the results
are not always reliable. The program graphs an auxiliary function
as a function of ρ for a given z, but the main purpose of the
rogram is to provide code for the computation of these func-
ions. This can be copied and pasted into a program that needs
hese functions. The program CPiP-Auxiliary-2.nb is a simplified
ersion for a single interface. We set ℓ = 0 in the associated
unctions, and the L functions disappear. The main difference is
hat the Fresnel reflection and transmission coefficients simplify,
s shown in the Appendix. The resulting program is much faster
han CPiP-Auxiliary-1.nb.

The program CPiP-Field lines-1.nb, and its single interface
ersion CPiP-Field lines 2.nb, generates a streamline picture for
he flow of energy in the yz plane. The dipole moment has to
e taken to be in the yz plane, so it has the form {0, dy, dz} in
athematica notation. The numbers dy and dz are arbitrary com-
lex numbers. The normalization as given by Eq. (5) is then done
y the program. Alternatively, for a linear dipole the direction
of the dipole axis can be specified. The dipole then oscillates

nder angle γ with the positive z axis. For this case the unit
olarization vector of the dipole moment is û = {0, sin γ , cos γ }.
hen the variable gammatf is set to True, this û will be used, and

his vector will be represented by a dashed arrow in the field line
igure. If dy and dz are to be used, this parameter should be set
o False. The parameter nstep determines the number of points
enerated to make the Table for the computation of the field lines
ith ListStreamPlot. A good value seems to be nstep = 25. Larger
alues significantly increase the computation time, but with little
r no improvement of the resulting graph. The Poynting vector
iverges at the location of the dipole, and this may give numerical
roblems in the computation of field lines. Since field lines are
etermined by the direction of the vector field at each point, the
ector field can be multiplied through by any positive function.
e multiply σ by q51, and here

q1 =

√
y2 + (z + h)2, (34)

is the dimensionless distance between the field point (in the yz
plane) and the dipole.

9. Conclusions

We have presented a method for the numerical computation
of Sommerfeld-type integrals. These integrals are needed for the
study of near-field phenomena in electric dipole radiation near
an interface. The reflected fields, the transmitted fields and the
fields in the layer are expressed in terms of these integrals, and
an accurate and efficient method is needed for the computation
of these integrals. We have shown that there is a great advan-
tage in splitting the integrals in their traveling and evanescent
contributions. On one hand, this eliminates a singularity which
is inherent in angular spectra, and on the other hand it improves
the accuracy of computation. We have illustrated the feasibility of
our approach by applying the technique to make electromagnetic
energy flow diagrams in the near field. Very small details, like
singularities and sub-wavelength vortices, are perfectly resolved.
Even though such diagrams involve the computation of huge
numbers of integrals, the computation time for one field line pic-
ture remains reasonable (about 15 min, but this depends heavily
on the choice of parameters).
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Appendix

The auxiliary functions for the r, a, b and t waves are con-
structed as follows. The Fresnel coefficients for plane waves are
functions of α, given by
waves

s(α) = (µ2v1 + µ1v2)(µ3v2 + µ2v3) + (µ2v1 − µ1v2)

× (µ3v2 − µ2v3)e2iv2ℓ, (A.1)

s(α) =
1
Λs

[
(µ2v1 − µ1v2)(µ3v2 + µ2v3) + (µ2v1 + µ1v2)

× (µ3v2 − µ2v3)e2iv2ℓ
]
, (A.2)

s(α) =
2
Λs

µ2v1(µ3v2 + µ2v3), (A.3)

Bs(α) =
2
Λs

µ2v1(µ3v2 − µ2v3)eiv2ℓ, (A.4)

Ts(α) =
4
Λs

µ2µ3v1v2eiv2ℓ. (A.5)

p waves

Λp(α) = (ε2v1 + ε1v2)(ε3v2 + ε2v3) + (ε2v1 − ε1v2)

× (ε3v2 − ε2v3)e2iv2ℓ, (A.6)

Rp(α) =
1

Λp

[
(ε2v1 − ε1v2)(ε3v2 + ε2v3) + (ε2v1 + ε1v2)

× (ε3v2 − ε2v3)e2iv2ℓ
]
, (A.7)

p(α) =
2

Λp

n2

n1
ε1v1(ε3v2 + ε2v3), (A.8)

Bp(α) =
2

Λp

n2

n1
ε1v1(ε3v2 − ε2v3)eiv2ℓ, (A.9)

Tp(α) =
4

Λp

n3

n1
ε1ε2v1v2eiv2ℓ. (A.10)

In angular spectra representations, the integrands have a fac-
tor α/v1. For n1 > 0, this gives a singularity on the integration
axis, since v1 = 0 at α = n1. All Fresnel coefficients, except the
ones for r waves, have a factor v1. Therefore, we define reduced
Fresnel coefficients as

A′

σ (α) = Aσ /v1, (A.11)

B′

σ (α) = Bσ /v1, (A.12)

T ′

σ (α) = Tσ /v1, (A.13)

for σ = s, p. In this way, most of the singularities cancel out.
The associated functions are functions of α and z, defined as

rσ (α, z) = Rσ eiv1(h−z), (A.14)

aσ (α, z) = A′

σ eiv1h+iv2z, (A.15)

bσ (α, z) = B′

σ eiv1h+iv2(ℓ−z), (A.16)

tσ (α, z) = T ′

σ eiv1h+iv3(z−ℓ), (A.17)

for σ = s, p.
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The auxiliary functions that enter the expressions for the
electric and magnetic fields are functions of the coordinates ρ and
z. They are defined as
s waves

R (1)
s (ρ, z) =

i
2

∫
∞

0
dα

α

v1
rs(J0 + J2), (A.18)

(2)
s (ρ, z) =

i
2

∫
∞

0
dα

α

v1
rs(J0 − J2), (A.19)

(3)
s (ρ, z) =

i
2

∫
∞

0
dα α rsv1(J0 − J2), (A.20)

R (4)
s (ρ, z) = −

i
2

∫
∞

0
dα α rsv1(J0 + J2), (A.21)

R (5)
s (ρ, z) = −

∫
∞

0
dα

α

v1
rsαJ1, (A.22)

(1)
s (ρ, z) =

i
2

∫
∞

0
dα α(as + bs)(J0 + J2), (A.23)

L(2)
s (ρ, z) =

i
2

∫
∞

0
dα α(as + bs)(J0 − J2), (A.24)

L(3)
s (ρ, z) = −

i
2

∫
∞

0
dα α(as − bs)v2(J0 − J2), (A.25)

L(4)
s (ρ, z) =

i
2

∫
∞

0
dα α(as − bs)v2(J0 + J2), (A.26)

L(5)
s (ρ, z) = −

∫
∞

0
dα α(as + bs)αJ1, (A.27)

T (1)
s (ρ, z) =

i
2

∫
∞

0
dα α ts(J0 + J2), (A.28)

T (2)
s (ρ, z) =

i
2

∫
∞

0
dα α ts(J0 − J2), (A.29)

T (3)
s (ρ, z) = −

i
2

∫
∞

0
dα α tsv3(J0 − J2), (A.30)

T (4)
s (ρ, z) =

i
2

∫
∞

0
dα α tsv3(J0 + J2), (A.31)

T (5)
s (ρ, z) = −

∫
∞

0
dα α tsαJ1. (A.32)

waves

(1)
p (ρ, z) = −

i
2n2

1

∫
∞

0
dα α rpv1(J0 − J2), (A.33)

R (2)
p (ρ, z) = −

i
2n2

1

∫
∞

0
dα α rpv1(J0 + J2), (A.34)

R (3)
p (ρ, z) =

i
n2
1

∫
∞

0
dα

α

v1
rpα2J0, (A.35)

(4)
p (ρ, z) = −

1
n2
1

∫
∞

0
dα α rpαJ1, (A.36)

(5)
p (ρ, z) = −

i
2

∫
∞

0
dα α rp(J0 + J2), (A.37)

R (6)
p (ρ, z) =

i
2

∫
∞

0
dα α rp(J0 − J2), (A.38)

R (7)
p (ρ, z) =

∫
∞

0
dα

α

v1
rpαJ1, (A.39)

L(1)
p (ρ, z) =

i
∫

∞

dα α(ap − bp)v1v2(J0 − J2), (A.40)

2n1n2 0
L(2)
p (ρ, z) =

i
2n1n2

∫
∞

0
dα α(ap − bp)v1v2(J0 + J2), (A.41)

(3)
p (ρ, z) =

i
n1n2

∫
∞

0
dα α(ap + bp)α2J0, (A.42)

(4)
p (ρ, z) =

1
n1n2

∫
∞

0
dα α(ap − bp)αv2J1, (A.43)

(5)
p (ρ, z) =

1
n1n2

∫
∞

0
dα α(ap + bp)αv1J1, (A.44)

(6)
p (ρ, z) = −

in2

2n1

∫
∞

0
dα α(ap + bp)v1(J0 + J2), (A.45)

(7)
p (ρ, z) =

in2

2n1

∫
∞

0
dα α(ap + bp)v1(J0 − J2), (A.46)

(8)
p (ρ, z) =

n2

n1

∫
∞

0
dα α(ap + bp)αJ1, (A.47)

(1)
p (ρ, z) =

i
2n1n3

∫
∞

0
dα α tpv1v3(J0 − J2), (A.48)

T (2)
p (ρ, z) =

i
2n1n3

∫
∞

0
dα α tpv1v3(J0 + J2), (A.49)

T (3)
p (ρ, z) =

i
n1n3

∫
∞

0
dα α tpα2J0, (A.50)

T (4)
p (ρ, z) =

1
n1n3

∫
∞

0
dα α tpαv3J1, (A.51)

T (5)
p (ρ, z) =

1
n1n3

∫
∞

0
dα α tpαv1J1, (A.52)

T (6)
p (ρ, z) = −

in3

2n1

∫
∞

0
dα α tpv1(J0 + J2), (A.53)

T (7)
p (ρ, z) =

in3

2n1

∫
∞

0
dα α tpv1(J0 − J2), (A.54)

(8)
p (ρ, z) =

n3

n1

∫
∞

0
dα α tpαJ1. (A.55)

Here, the argument of each Bessel function is Jk = Jk(αρ), needed
for k = 0, 1, and 2.

It should be noted that as compared to Ref. [24], there is a
slight improvement in the presentation. In Ref. [24], the a and
b waves were constructed separately, with their own auxiliary
functions, and then the a and b waves were added in the ex-
pressions for the fields. It has come to our attention that this is
an unnecessary complication. We have now added the a and b
waves at the level of the auxiliary functions, and introduced the
L(i)

σ functions. This reduces the number of auxiliary functions from
51 to 38.

For the case of a single interface, we set ℓ = 0. Then we do not
need the functions L(i)

σ . We set ℓ = 0 in the associated functions,
and the remaining Fresnel coefficients simplify to

Rs =
µ3v1 − µ1v3

µ3v1 + µ1v3
, (A.56)

Ts =
2µ3v1

µ3v1 + µ1v3
, (A.57)

Rp =
ε3v1 − ε1v3

ε3v1 + ε1v3
, (A.58)

Tp =
n3

n1

2ε1v1

ε3v1 + ε1v3
. (A.59)
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